15 research outputs found

    Non-blocking supervisory control for initialised rectangular automata

    Get PDF
    We consider the problem of supervisory control for a class of rectangular automata and more specifically for compact rectangular automata with uniform rectangular activity, i.e. initialised. The supervisory controller is state feedback and disables discrete-event transitions in order to solve the non-blocking forbidden state problem. The non-blocking problem is defined under both strong and weak conditions. For the latter maximally permissive solutions that are computable on a finite quotient space characterised by language equivalence are derived

    On weighted time optimal control for linear hybrid automata using quantifier elimination

    Get PDF
    This paper considers the optimal control problem for linear hybrid automata. In particular, it is shown that the problem can be transformed into a constrained optimization problem whose constraints are a set of inequalities with quantifiers. Quantifier Elimination (QE) techniques are employed in order to derive quantifier free inequalities that are linear. The optimal cost is obtained using linear programming. The optimal switching times and optimal continuous control inputs are computed and used in order to derive the optimal hybrid controller. Our results areapplied to an air traffic management example

    Target control for hybrid systems with linear continuous dynamics

    Get PDF
    We consider the target control problem for hybrid systems with linear continuous dynamics. The system is modelled as a hybrid automaton. Control action is applied on the discrete level, while the continuous dynamics is subject to constant or set valued disturbance. The proposed controller ensures that the system can be transferred from any point of an initial set to a target set of the hybrid state space. A control design algorithm based on reachability analysis is proposed. For the implementation of the algorithm, approximate reachability analysis is employed. This involves under-approximation of reachable sets under linear continuous dynamics. The algorithm is applied to a batch control proble

    Robust semi-explicit model predictive control for hybrid automata

    Get PDF
    In this paper we propose an on-line design technique for the target control problem of hybrid automata. First, we compute on-line the shortest path, which has the minimum discrete cost, from an initial state to the given target set. Next, we derive a controller which successfully drives the system from the initial state to the target set while minimizing a cost function. The (robust) model predictive control (MPC) technique is used when the current state is not within a guard set, otherwise the (robust) mixed-integer predictive control (MIPC) technique is employed. An on-line, semi-explicit control algorithm is derived by combining the two techniques and applied on a high-speed and energy-saving control problem of the CPU processing

    On suboptimal control design for hybrid automata using predictive control techniques

    Get PDF
    In this paper we propose an on-line design technique for the target control problem, when the system is modelled by hybrid automata. First, we compute off-line the shortest path, which has the minimum discrete cost, from an initial state to the given target set. Next, we derive a controller which successfully drives the system from the initial state to the target set while minimizing a cost function. The model predictive control (MPC) technique is used when the current state is not within a guard set, otherwise the mixed-integer predictive control (MIPC) technique is employed. An on-line, semi-explicit control algorithm is derived by combining the two techniques. Finally, as an application of the proposed control procedure, the high-speed and energy-saving control problem of the CPU processing isconsidered

    Filtering and stochastic control for diffusions on manifolds

    No full text
    Imperial Users onl

    On a Simplified Untiming Procedure for Supervisory Control of Timed Automata When the Time Increases Strictly Monotonically

    No full text
    ... In this paper we construct an alternative finite state machine which also accepts the language Untime (L ), but has fewer states than G 0 . This is shown for languages of both finite and infinite traces given that the time values in the time sequence increase strictly monotonically. The supervisory control design for timed automata, when the simplified untiming procedure is used and the time is strictly positive, is studied
    corecore